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The advancement of high-throughput transcriptome profiling techniques, such as next-
generation sequencing and microarray, has led to the development of bioinformatics 
tools and databases for functional genomics. Integrated bioinformatics analysis has 
emerged as a promising strategy to address the major cause of morbidity and death 
globally: cancer. In this study, we aimed to use an integrated bioinformatics pipeline to 
identify potential molecular biomarkers for diagnosis and prognosis in cancer studies. 
Specifically, we focused on head and neck squamous cell carcinoma (HNSCC). To 
achieve this, we performed a meta-analysis on expression datasets from the Gene 
Expression Omnibus (GEO) using GEO2R to derive differentially expressed genes 
(DEGs). Subsequently, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis. Protein-protein interaction 
networks of the up-regulated and down-regulated genes were constructed using the 
STRING database, and the top ten hub genes for each group were identified using 
cytoHubba. The relative mRNA expression of the identified DEGs was validated with 
GEPIA2, and their correlation with the overall survival of HNSCC patients was 
assessed using Kaplan-Meier analysis. Combining our findings with published 
evidence, we observed that the up-regulated genes primarily function in the 
extracellular matrix and cell cycle regulation. In contrast, the down-regulated genes are 
involved in muscle contraction. Our results suggest that six down-regulated genes 
(MYL1, MYL3, MYH6, MYLPF, ACTA1, TTN) and five up-regulated genes (CDC20, 
CCNB1, MAD2L1, TOP2A, MMP9) have the potential to serve as diagnosis biomarkers. 
In contrast, five up-regulated genes (FN1, CDK1, PLK1, AURKA, CD44) could be used 
for prognosis and diagnosis in the clinical analysis of HNSCC. This study demonstrated 
the effectiveness of an integrated bioinformatics approach in identifying clinically 
relevant biomarkers for HNSCC, and the pipeline could be applied to other cancer 
datasets. Further investigation of the identified biomarkers will enrich our 
understanding of their involvement in the molecular mechanism of carcinogenesis and 
provide potential therapeutic targets for HNSCC. 
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INTRODUCTION 
 
Derivation of Differentially Expressed Genes (DEGs) 
 
Bioinformatics analysis is widely recognised for its 
application in deriving differentially expressed genes 
(DEGs), which can serve as potential biomarkers to predict 
cancer development and progression. The emergence of 
transcriptomic profiling techniques, public repositories for 
transcriptomic data, and differential gene expression 
analysis tools have significantly contributed to the 
development of meta-analysis in cancer research. In this 
population-based study, we describe and demonstrate the 
design of a robust analysis pipeline that integrates protein-
protein interaction (PPI) networks and leverages literature 
evidence to gain a better understanding of individual gene 
functions. 
 
Transcriptome Profiling and Meta-analysis in 
Integrative Bioinformatics 
 
The advancement of transcriptome profiling has facilitated 
the exploration of differential gene expression, providing 
insights into the underlying molecular mechanism of 
diseases. DEGs are genes that exhibit distinct up-regulation 
or down-regulation in response to disease or treatment, 
making them potential biomarkers. Transcriptomic data, 
which captures the complete set of RNAs transcribed by the 
DNA of cells or tissues, can reveal differences in gene 
expression during disease development and specific 
physiological conditions. High-throughput transcriptomic 
technologies, such as microarray and next-generation 
sequencing (NGS), have played crucial roles in generating 
quality transcriptomic data for analysis. The ultimate goal of 
generating extensive transcriptomic data is elucidating the 
interactions among cellular components that govern cancer 
pathogenesis [1, 2]. 

The accessibility of transcriptomic data from online 
databases has contributed to the rapid development of 
bioinformatics tools. Archived experimental datasets from 
various diseases, synthesised by the research community, are 
deposited on platforms such as the Gene Expression 
Omnibus (GEO) [3] and The Cancer Genome Atlas (TCGA), 
a publicly accessible repository for cancer-related genomic 
profiles [4]. The meta-analysis, which combines 
retrospective results from multiple comparable datasets 
obtained from clinical samples, offers advantages in 
overcoming the limitation of small sample sizes, increasing 
statistical power, and producing clinically relevant results [5, 
6]. The choice of software tools for identifying DEGS 
depends on the upstream processing of transcriptomic data 
obtained from different platforms and sources. However, 
downstream analysis of protein-protein interactions and 
functional prediction could be unified, with shared analysis 
routes for DEGs derived from both RNA-seq and microarray 

data. This highlights the flexibility of meta-analysis in 
identifying DEGs. 
 
Features of a Biological Network  
 
While studying gene regulation on an individual basis is 
essential, understanding the patterns of interactions between 
genes is equally essential to obtaining a conceptual view of 
functionally interacting molecules. Analysing differential 
gene expression with biological network studies has 
attracted attention to identifying hypothetical driver genes 
specific to certain biological pathways in cancer. The 
identification of targets based on biological networks, such 
as gene regulations, co-expression of gene targets, and 
protein-protein interactions, has been demonstrated in cancer 
studies, including lung cancers and hepatocellular carcinoma  
[7, 8, 9].  

Biomolecular interaction networks are essential in 
predicting and conducting association studies of disease-
causing genes. Network biology aims to establish 
connections between genes associated with specific 
functions or phenotypes, such as disease causation, with the 
positioning of each node not occurring randomly [10, 11, 
12]. This approach has revealed increased interactions 
between protein products and tissue-specific co-expression 
in genetic disease research. Regarding the function of 
disease-related genes, it has been found that molecular 
functions, cellular components, and biological processes 
identified through Gene Ontology (GO) exhibit predictive 
capabilities. This theory could be further applied to predict 
the severity of disease outcomes following targeted 
treatment or to differentiate histopathologically similar 
diseases. It is postulated that neighbouring genes of a 
pathologically related gene within a network may function 
conjunctively in the same or closely related diseases [13, 14].  

Building upon the advantages mentioned earlier, 
integrating network-based meta-analysis strengthened by 
incorporating literature evidence can further enhance the 
robustness of cancer biomarker discovery through 
bioinformatics analysis. Cancer biomarkers are measurable 
molecules crucial in detecting aberrant expression, 
distinguishing normal tissues from disease, predicting 
treatment outcomes, and assessing the risk of cancer 
progression or recurrence before histological alterations 
occur. Collectively, this information can guide clinical 
decision-making, justifying the application of appropriate 
therapeutic strategies and improving success rates [15]. 
 
Differentially Expressed Genes (DEGs) and Cancer 
Biomarker 
 
The applications of integrative bioinformatics in identifying 
core DEGs involved in tumourigenesis, malignancy, or 
disease progression are considered prominent in cancer 
research. It has been widely applied to derive clinically  
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relevant biomarkers, as demonstrated in hepatocellular 
carcinoma [9], prostate cancer [16], and breast cancer [17]. 
Head and neck squamous cell carcinoma (HNSCC) ranks 
Asia’s eleventh most common cancer, with approximately 
931, 931 new incidences detected and 467, 125 deaths 
reported worldwide in 2020 [18]. The incidence rate and 
mortality of SCC in the lip, larynx, nasopharynx, oral cavity, 
oropharynx, hypopharynx, and salivary glands have not 
declined despite the advancement in the clinical 
management of oncology, including surgical removal of the 
tumour, radiotherapy, and chemotherapy [19, 20]. A 
subcategory of HNSCC, oral squamous cell carcinoma 
(OSCC), is a malignant neoplasia arising from the oral 
cavity’s mucosal lining [21]. It could lead to dysfunctions in 
chewing, swallowing, and speech, significantly impacting 
the quality of life in patients. 

Furthermore, recurrence of OSCC is potent due to the 
rich lymph vessels in the oral cavity, and thus, a close 
association with local expansion and lymphatic metastasis 
[22, 23]. The poor prognosis of OSCC is evident in the lack 
of significant improvement in the overall five-year survival 
rate, which has remained the lowest among malignancies 
(<50%) for the past thirty years [24]. Hence, searching for 
clinically applicable biomarkers is crucial in preventing late 
diagnosis, metastasis, and recurrences contributing to the 
poor prognosis of HNSCC [25]. 
 
Aim and Objectives of the Study 
 
This study aims to demonstrate the application of an 
integrated bioinformatics pipeline for identifying DEGs in 
cancer studies. Its objective is to identify molecular 
biomarkers with potential diagnostic and prognostic value in 
HNSCC: i) to identify potential biomarkers for the diagnosis 
and prognosis of HNSCC, and ii) to reveal the molecular 

mechanism underlying HNSCC through integrated DEG 
analysis. The study describes a general workflow for 
network-based meta-analysis using HNSCC as the subject of 
study; however, its application of this approach can also 
extend to other types of cancer. 
 
MATERIALS AND METHODS 
 
Data Processing and Differential Expression Analysis 
 
The differential expression analysis was initiated using .CEL 
files obtained from three separate datasets available on the 
NCBI Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). These three datasets, 
namely GSE13601, GSE30784, and GSE31056, comprise 
the microarray profiling studies of OSCC (Table 1). For each 
dataset, the control group consisted of normal oral tissues 
without preneoplastic oral lesions. Dysplasia and margin 
samples that do not fit the normal and tumour definitions 
were excluded from this study. Each dataset was subjected 
to GEO2R analysis 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/), which is a web 
analysis tool that uses GEOquery (version 2.40.0) and limma 
package (version 3.26.8) to identify DEGs across two 
experimental groups: cancer and control [3]. The output 
from GEO2R was downloaded and subjected to joint 
filtering based on fold change and p-value. DEG with a 
significant threshold of |log2 fold change| > 1 and p-value < 
0.01 were selected [26]. The analysis was performed using 
the R statistical programming software (version 4.0.2). The 
outputs of the differential gene expression analysis from 
GEO2R were visualised as a volcano plot, considering both 
statistical significance (p-value on the y-axis) and biological 
relevance (fold change as the x-axis) to identify significantly 
up-regulated and down-regulated genes.

 
 
Table 1. Details of the normal and tumour samples used for the three Gene Expression Omnibus (GEO) datasets 
 

Dataset Normal (n) Tumour (n) Reference 
GSE13601 27 31 Estilo et al., 2009 
GSE30784 45 167 Chen et al., 2008 
GSE31056 24 23 Reis et al., 2011 

 
 
After identifying the DEGs, additional data cleaning was 

performed. Microarray probe identity (ID) annotated with 
multiple gene names (e.g., annotated with “///”) was updated 
using Gene Set Enrichment Analysis (GSEA, version 4.1.0). 
Probe IDs that still had multiple gene names were cross-
referenced with BioGPS (http://biogps.org/#goto=welcome) 
for secondary verification and replacement with the latest 
gene name [30, 31, 32]. Metascape 
(https://metascape.org/gp/index.html#/main/step1) [33] and 
HUGO Gene Nomenclature Committee (HGNC, 

https://www.genenames.org/) [34] were then used to update 
the remaining gene to the latest gene symbols. In cases of 
genes with multiple copies, the genes showing the highest 
up-regulation or down-regulation, as indicated by its 
respective log2 fold change value, was retained. Lastly, the 
Venn diagram generated with Venny 2.1 
(https://bioinfogp.cnb.csic.es/tools/venny/) was used to 
identify the DEGs common to all three datasets [35]. 

The overall workflow for section 2.1 is shown in Figure 
1.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://biogps.org/#goto=welcome
https://metascape.org/gp/index.html#/main/step1
https://www.genenames.org/
https://bioinfogp.cnb.csic.es/tools/venny/
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Figure 1. Workflow to shortlist significantly up-regulated and down-regulated genes using various bioinformatics tools. 
 
 
Functional Enrichment Analysis of Gene Products 
 
The official gene symbols of the common DEGs (Homo 
sapiens species) obtained from Venn diagrams were 
subjected to functional annotation using the Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID) version 6.8 (https://david.ncifcrf.gov/) [36, 37]. 
The parameters used for functional enrichment analysis 
were: count threshold = 2; modified Fisher exact p-value = 
0.05. A report consisting of enriched pathways with a 
minimum of two genes involved and a statistically 
significant p-value (< 0.05) was generated. The top ten gene 
ontology (GO) terms for biological process, cellular 
component, molecular function, and the top ten enriched 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways were examined [38, 39]. Each enriched GO term 
or pathway name identified using DAVID is associated with 
its respective gene count, rich factor, and Fisher exact p-
value. These values are utilised to understand the 
relationship between gene functions and cancer 
development. Bubble charts are created using the ggplot2 
package (version 3.3.3) in R for visualisation [40]. 
 
Construction of Protein-protein Interaction (PPI) 
Networks 
 
The interaction of gene products in the up-regulated and 
down-regulated groups, as identified in section 2.1, was  
 

separately searched against the STRING database version 
11.0 (https://string-db.org/) [41]. A PPI network was 
constructed by selecting Homo sapiens as the parameter and 
shortlisting the top ten genes with the highest connectivity. 
The tabulated result from STRING was processed using the 
Cytoscape software (version 3.8.1) by transforming it into an 
organic layout [42]. To optimise the visualisation of the top 
modules within the PPI network, the Molecular Complex 
Detection (MCODE) tool within Cytoscape was employed. 
For both the up-regulated and down-regulated gene groups, 
the top three modules of network interactions were mapped 
using specific cut-off values: degree cut-off = 2, node score 
cut-off = 0.2, maximum depth = 100, and k-score = 2. 
Furthermore, the cytoHubba plugin in Cytoscape was 
employed to calculate the node scores and visualise the 
interactions of the top ten candidate genes ranked by their 
degree of connectivity [43]. 

The regulations of the twenty hub genes (ten for each 
expression group), selected from the cytoHubba analysis, 
were visualised through the construction of heatmaps using 
sample data obtained from the three GEO datasets. The 
Morpheus web application 
(https://software.broadinstitute.org/morpheus/) was utilised 
to visualise gene expression patterns across samples with 
varying experimental conditions. This hierarchical 
clustering, based on one minus Pearson correlation, was 
applied to the arranged samples and DEGs for enhanced 
visualisation. 
 
 

https://david.ncifcrf.gov/
https://software.broadinstitute.org/morpheus/
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mRNA Expression of Hub Genes 
 
Following the identification of ten hub genes from each up-
regulated and down-regulated group, the relative mRNA 
expression of each hub gene was validated. Single-gene 
analysis using the Gene Expression Profiling Interactive 
Analysis 2 (GEPIA2) tool (http://gepia2.cancer-
pku.cn/#analysis) was performed for each shortlisted hub 
gene [44]. Each gene was matched to the HNSCC databases 
of The Cancer Genome Atlas (TCGA) and Genotype-Tissue 
Expression Project (GTEx) to generate boxplots. The 
boxplots were generated using a threshold value of |log2 fold 
change| = 1 and p-value = 0.05. 
 
Correlation of Cancer Survival to the Expression of Hub 
Genes 
 
The correlation between the overall survival of HNSCC 
patients and the relative expression levels of hub genes, split 

by median, was identified using the Kaplan-Meier plotter for 
pan-cancer analysis (https://kmplot.com/analysis/) [45]. 
Kaplan-Meier mRNA curves derived from RNA-seq 
datasets obtained from GEO, TCGA, and European 
Genome-phenome Archive (EGA) were considered 
statistically significant if they had a p-value < 0.05. 
 
RESULTS 
 
Identification of Up-regulated and Down-regulated 
Genes from GEO Datasets 
 
Volcano plots were generated using joint filtering of fold 
change and p-value based on the output generated from the 
GEO2R analysis (Figure 2). The number of up-regulated and 
down-regulated genes identified for each dataset can be 
found by referring to Figure 2, and the summary is provided 
in Table 2.

 
 

 
 

Figure 2. Volcano plots of DEGs generated using the joint filtering of |log2 fold change| > 1 and –log10 p-value > 2 for three GEO datasets 
are shown. These scatterplots are useful for visually identifying significantly up-regulated genes (blue dots), down-regulated genes (red dots), 
and non-significant genes (black dots) across the three datasets. The identification is based on the set threshold of –log10 p-value > 2 and |log2 
fold change| > 1. The volcano plots were generated using the R statistical programming software. 
 
 
Table 2. Number of up-regulated and down-regulated genes identified from the volcano plots of the respective datasets 
 

Dataset Up-regulated Genes (n) Down-regulated Genes (n) 
GSE13601 1184 1983 
GSE30784 3668 3315 
GSE31056 1732 1784 

 
 
 
 
 
 
 

http://gepia2.cancer-pku.cn/#analysis
http://gepia2.cancer-pku.cn/#analysis
https://kmplot.com/analysis/
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After identifying the up-regulated and down-regulated 
genes in each dataset, the presence of common DEGs across 
all three datasets was examined. As depicted in Figure 3, 454 

up-regulated genes and 371 down-regulated genes were 
found to be common among the datasets.

 
 

(a)  

 

(b)  

 
 
Figure 3. Venn diagrams illustrating the intersected (a) up-regulated genes and (b) down-regulated genes across the three GEO datasets. The 
Venn diagrams were created using the Venny web tool. The comprehensive list of these common genes found in all three datasets can be 
referenced in Supplementary Material 1. 
 
 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Pathway Functional Enrichment 
Analysis 
 
Figure 4 presents the top ten enriched biological processes, 
cellular components, molecular functions, and KEGG 
pathways. The degree of enrichment for each pathway was 
determined using a p-value, where a smaller value indicates 
a higher level of enrichment in the studied pathway. Detailed 
information can be found in Supplementary Material 2. 

Several enriched GO terms were identified from the 
analysis of the 454 up-regulated genes in DAVID. In the 
biological process function group, the top enriched terms 
were the type I interferon signalling pathway, extracellular 
matrix (ECM) organisation, collagen catabolic process, and 
leukocyte migration, all of which are closely associated with 
the immune defence mechanism in cancer (Figure 4a). The 
enrichment analysis of cellular component GO terms 
revealed that up-regulated genes are involved in ECM and 
focal adhesion, highlighting their relation to the malignant 
progression of cancer (Figure 4b). Regarding molecular 
function, up-regulated genes were primarily involved in 
protein binding, ECM structural constituent, and integrin 
binding, all of which commonly contribute to 

tumourigenesis (Figure 4c). Notably, the protein binding GO 
term (Figure 4c) exhibited the highest gene count and rich 
factor among all the pathways listed in Figure 4(a-h), 
indicating that 71.37% of the up-regulated genes are 
associated with this molecular function. The KEGG 
enrichment analysis identified pathways such as the cell 
cycle, ECM-receptor interaction, and focal adhesion, 
providing further insights into the molecular mechanism 
underlying HNSCC (Figure 4d). 

In contrast to the up-regulated genes, the down-regulated 
genes showed a stronger correlation with biological 
processes related to muscle filament sliding and muscle 
contraction (Figure 4e). Similarly, within the cellular 
component category, enriched GO terms such as 
extracellular exosome and muscle myosin complex were 
identified (Figure 4f). Regarding molecular function, the 
down-regulated genes were significantly associated with 
structural constituents of muscle and actin binding (Figure 
4g). The enriched KEGG pathways for the down-regulated 
genes included metabolic pathways and valine, leucine, and 
isoleucine degradation (Figure 4h). Overall, the results from 
the DAVID analysis demonstrated a stronger association of 
up-regulated genes with cancer progression and metastasis 
compared to the down-regulated genes.
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(a)  

 

(b)  

(c)  

 

(d) 

 
(e) (f) 

(g) 

 

(h) 

 
Figure 4. (a-d) The top ten enriched GO and KEGG pathways of the up-regulated and (e-h) down-regulated genes. The enriched pathways 
are categorised into biological process, cellular component, and molecular function for GO analysis, while KEGG enriched pathways are 
shown in (d) and (h). The plots were generated using the ggplot2 package in R statistical software. 
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Hub Genes Identification from PPI networks 
 
The interactions between the translated proteins of 454 up-
regulated and 371 down-regulated common genes within 
their respective expression groups were investigated using 

STRING. The PPI networks depicted in Figure 5 are highly 
interactive, with a higher density of nodes observed in the 
clustered up-regulated genes compared to the down-
regulated genes.

 
 

(a) 
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(b) 

 
 
Figure 5. Protein-protein interaction (PPI) networks of (a) 454 up-regulated genes and (b) 371 down-regulated genes generated from the 
STRING database. The thickness of the lines indicates edge confidence, with a stronger connection between nodes represented by thicker 
connectors. 
 

To focus on the PPI more specifically, MCODE was 
utilised to identify the top three highly interactive modules 
for the up-regulated and down-regulated gene groups, as 
depicted in Figure 5. Each PPI was assigned a score, 
indicating the connectivity level among the interacting 
proteins (refer to Supplementary Material 3). The top 
module of up-regulated genes exhibited a score of 44.39, 
comprising 47 nodes and 1021 edges (Figure 6a), followed 
by a score of 22.089, with 46 nodes and 497 edges (Figure 
6b). Module three consisted of 27 nodes and 153 edges, with 

a score of 11.769 (Figure 6c). In comparison, the top module 
of down-regulated genes displayed a lower score of 17.5, 
encompassing 21 nodes and 175 edges (Figure 6e). The 
second-ranked module achieved a score of 13.571, with 15 
nodes and 95 edges (Figure 6f), while module 3 comprised 
11 nodes and 26 edges, attaining a score of 5.2 (Figure 6g).  

The subsequent selection of the top ten candidate genes 
from each up-regulated and down-regulated group was based 
on their degree of connectivity within their respective PPI 
networks, using cytoHubba. As illustrated in Figure 6d, the 
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most prominent up-regulated gene, represented by the 
highest intensity of colour ranging from yellow to red, 
corresponds to fibronectin-1 (FN1), with a top score of 111. 
Among the ten up-regulated and ten down-regulated genes, 
the highest score observed for a down-regulated gene is 36 
(Titin, TTN), which is considerably lower than the score of 

75 achieved by the tenth-ranked up-regulated gene, matrix 
metallopeptidase 9 (MMP9). This implies that the ten up-
regulated genes are more likely to function as hub genes, 
producing proteins that exhibit more intensive interactions 
than the down-regulated genes.

 
 

(a) 

 

 (b)  

 
(c) 

 

(d)   



MJBMB, 2023, 2, 6-30 
 

- 16 - 
 

(e)  

 

(f) 

 

(g) 

 

(h) 

 
 

  

(i) 

     
 

(j) 

      

 
Figure 6. Module analysis of PPI networks was conducted using Cytoscape, focusing on (a-d) up-regulated genes and (e-h) down-regulated 
genes. (a-c; e-g) The MCODE application was employed to identify the top three modules with the highest connectivity in each group. (d, 
h) The nodes’ scores calculated from cytoHubba were used to assign colours and annotations to the top ten candidate DEGs. The intensity 
of colour ranges from yellow to red, indicating an increasing degree of connectivity, with dark red representing the gene with the highest 
score and light yellow representing the gene with the least connection among the ten hub genes in the PPI network. (i-j) The top ten (i) up-
regulated and (j) down-regulated genes, ranked by their degree of connectivity, are displayed. 
 

 
 
 
 

Rank Name Score
1 FN1 111
2 CDK1 92
3 PLK1 90
4 AURKA 85
5 CDC20 82
6 CCNB1 81
7 MAD2L1 78
8 CD44 76
8 TOP2A 76

10 MMP9 75

Rank Name Score
1 TTN 36
2 ACTN2 30
3 MYL1 28
4 ATP5F1A 27
4 ACTA1 27
4 MYL3 27
4 MYH6 27
8 ATP2A1 26
8 MYLPF 26

10 COX5A 25
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To examine the mRNA expression trends of the 
candidate genes, heatmaps were generated for both normal 
and OSCC samples (refer to Supplementary Material 4). 
Figure 7(a-f) illustrates the distinct patterns of expression 
observed for the up-regulated and down-regulated genes. In 
Figure 7(a-c), the ten up-regulated candidate genes 
consistently exhibited increased mRNA expression 
(indicated by red cells) in tumour samples across the three 

datasets. Similarly, Figure 7(d-f) displays decreased 
transcript expression (indicated by blue cells) of the down-
regulated genes in tumour samples. These findings align 
with the classification of the experimental data into up-
regulated and down-regulated groups, thereby validating the 
successful identification and categorisation of DEGs using 
the R script.

 
(a) 

 
 
(b) 
 

 
(c) 
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(d) 

 
(e) 

 
(f) 

 
 
Figure 7. Heatmaps depicting the expression levels of the top ten up-regulated hub genes (a-c) and the ten down-regulated hub genes (d-f) 
were created using samples from the GSE13601, GSE30784, and GSE31056 datasets. In the heatmaps, red cells indicate samples where the 
corresponding genes were up-regulated, while blue cells indicate samples where the genes were down-regulated. The data used for generating 
the heatmaps were obtained from the GEO database, and the plots were created using the Morpheus online tool. 
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Transcriptional Expression of Hub Genes 
 
The boxplots generated using expression data obtained from 
TCGA and GTEx databases corroborate the results obtained 
from the differential analysis. Genes classified as up-
regulated exhibit higher expression levels in the tumour 
samples (Figure 8a), while down-regulated genes show a 
lower median in the tumour samples (Figure 8b). Except for 
CD44, ATP5F1A, MYH6, and COX5A, all the identified hub 
genes display significant up-regulation or down-regulation 
in HNSCC. This suggests that the differential expression of 
these hub genes in HNSCC samples may contribute to the 
progression and development of cancer. Furthermore, these 
findings indicate that the experimental pipeline employed in 
this study can identify genes with regulatory patterns 
consistent with those observed in TCGA and GTEx 
databases despite the databases being independent. 
Therefore, the DEGs obtained from GEO datasets with small 
sample sizes can reflect the gene regulation patterns 
observed in larger clinical databases. 
 
Correlation of Cancer Survival to the Expression of Hub 
Genes 
 
The relationship between the expression levels of the 
identified hub genes and the probability of survival over time 
in HNSCC patients was examined to determine their 
prognostic significance. Figure 9a demonstrates that higher 
expressions of FN1, CDK1, PLK1, AURKA, and CD44 (up-
regulated hub genes) are associated with statistically 
significant lower overall survival in HNSCC (p-value < 
0.05). Similarly, Figure 9b shows that lower expression of 
TTN, ACTN2, MYL1, ACTA1, MYL3, and MYLPF (down-
regulated hub genes) significantly correlates with lower 
overall survival in HNSCC. However, the expression levels 
of the remaining hub genes did not exhibit a statistically 
significant impact on the survival duration of the sampled 
HNSCC patients. 
 
DISCUSSION 
 
In silico Derivation of Hub Genes 
 
This study aimed to identify DEGs that could serve as highly 
predictive biomarkers for the prevention and therapeutic 
interventions of HNSCC. Given the global prevalence of 
HNSCC, identifying potential biomarkers is crucial for early 

prevention and developing therapeutic interventions. This 
study represents a preliminary step in addressing the lack of 
biomarkers in clinical HNSCC patients.  

The study commenced with a meta-analysis of 
microarray gene expression to derive significantly up-
regulated (n=454) and down-regulated (n=371) genes across 
all three GEO datasets (Figure 3). The functional properties 
of the up-regulated and down-regulated gene cohorts were 
then observed through GO and KEGG pathway enrichment 
analysis (Figure 4). Subsequently, PPI networks were 
constructed using STRING (Figure 5), and hub genes, 
consisting of ten up-regulated and ten down-regulated genes, 
were shortlisted from cytoHubba (Figure 6). These hub 
genes are hypothesised to be major drivers of HNSCC due 
to their strong correlation with other DEGs. 

Furthermore, heatmaps generated using data from the 
GEO database revealed increased transcript levels in patient 
samples for the up-regulated genes and decreased transcript 
levels for the down-regulated genes across all three datasets 
(Figure 7). The correct classification of DEGs into the up-
regulated or down-regulated groups was cross-verified by 
analysing their relative gene expressions with GEPIA2 
(Figure 8). The findings demonstrate that the designed 
bioinformatics pipeline can identify gene candidates with 
distinguishable expression patterns in normal and cancer 
tissues.  

To merit DEGs for future research, supporting the 
biological relevance of the shortlisted genes generated from 
bioinformatics analysis with reported findings is essential. 
Understanding the etiological role of each hub gene in 
HNSCC, such as its involvement in carcinogenesis, 
metastasis, and invasion at a molecular level, is crucial in 
inferring their potential as HNSCC biomarkers for 
prognosis, diagnosis, or both. 

Further literature studies on the ten up-regulated hub 
genes (FN1, CDK1, PLK1, AURKA, CDC20, CCNB1, 
MAD2L1, CD44, TOP2A, MMP9) are consistent with the 
results, showing a positive correlation between their up-
regulation and HNSCC. Based on survival analysis, half of 
the identified up-regulated genes, including FN1, CDK1, 
PLK1, AURKA, and CD44 (refer to Figure 9a), are 
significantly associated with poorer survival in response to 
amplified expression. This further supports their potential 
role in HNSCC. However, regardless of their prognosis 
value, the study also identified the effect of gene expression 
for all genes in relation to HNSCC.
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(b) 
TTN ACTN2 MYL1 ATP5F1A 

ACTA1 MYL3 MYH6 ATP2A1 

MYLPF COX5A   
 

 
Figure 8. Expression levels of genes belonging to the (a) up-regulated and (b) down-regulated groups. Pink boxes represent patient samples 
diagnosed with HNSCC, while grey boxes indicate normal tissue samples. ATP5A1, the previous symbol for ATP5F1A, was used to search 
against the GEPIA2 web tool for analysis. Each of the identified DEGs was searched in GEPIA2, and the boxplots were generated with 
thresholds set at |log2 fold change| = 1 and p-value = 0.05. Significantly different expression levels with p-value < 0.05 are denoted by an 
asterisk (*). 
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(b)   

   

   

   

 

  

 
Figure 9. The prognostic significance of the identified up-regulated and down-regulated genes in HNSCC was assessed using Kaplan-Meier 
plots depicting the overall survival of HNSCC patients. Figure 9a displays the Kaplan-Meier plot for the up-regulated genes, while Figure 
9b shows the plot for the down-regulated genes. Each of the identified DEGs was analysed using the Kaplan-Meier Plotter web application, 
utilizing the built-in RNA-seq data of HNSCC. Curves with a p-value < 0.05 were deemed statistically significant, indicating that changes in 
gene expression could influence the survival of HNSCC patients.  
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Understanding the Roles of DEGs in Relation to Cancer 
 
The association of FN1 with adverse effects on HNSCC is 
evident due to its role as an ECM protein. FN1 encodes 
soluble plasma and insoluble cellular forms of FN1, with the 
insoluble cellular FN1 being a glycoprotein involved in 
cellular adhesion [20]. The expression of FN1 can lead to 
epithelial-mesenchymal transition (EMT) of tissue, 
characterised by the loss of E-cadherin and activation of 
Vimentin [46]. Consequently, epithelial cells lose their 
phenotypic and high differentiating characteristics while 
acquiring features of re-differentiation, such as stem cell 
characteristics, apoptosis resistance, migratory abilities, and 
invasiveness, which facilitate tumour invasion and 
metastasis [47]. In a study on HNSCC biomarkers, FN1 was 
found to be degraded by the p62-dependent autophagy-
lysosome pathway. In another study, FN1 was implicated in 
regulating apoptosis through the NF-κB/P65 pathway in 
nasopharyngeal carcinoma (NPC) [46, 48]. Increased mRNA 
expression of FN1 has also been reported in many cancers, 
including renal [49], thyroid [50], and colorectal cancer [51].    

The role of FN1 as a positive mediator in cancer is also 
demonstrated by its ability to induce metalloproteinases, 
promoting invasion and metastasis. Among the members of 
the metalloproteinase family, MMP9 is identified as one of 
the up-regulated genes in our study, consistent with its 
detection in the immunohistochemical analysis of HNSCC 
[52]. MMP9 is a gelatinase, specifically a type IV 
collagenase, that degrades collagen Type IV (ColIV), a 
principal component of the ECM [53]. During tumour 
invasion, metastasis, and angiogenesis, secretion of MMPs 
by stromal cells can dynamically manipulate the surrounding 
microenvironment to facilitate tumour spread [54]. An 
increase in MMP9 is detected in tumour epithelium and 
stroma upon tumour progression, leading to the gradual 
fragmentation of the basement membrane, thereby allowing 
the invasion of lamina propria in oral tongue squamous cell 
carcinoma (OTSCC) [55]. This suggests a close association 
between malignancy progression and the expression of 
MMP9, where the extensive dissolution of ColIV can lead to 
morphological changes in the basement membrane and 
surrounding tissue, and tumour angiogenesis. Therefore, 
elevated expression of MMPs in stromal cells is related to 
lymphatic metastasis, resulting in poorer survival rates for 
cancer patients [55]. Given the detection of MMP9 in the 
serum of HNSCC patients, it is suggested that MMP9 could 
serve as a marker for the diagnosis and early detection of 
HNSCC [56].  

Matrix metalloproteinase can also serve as ligands for 
CD44, a cell surface adhesion receptor. The binding of CD44 
to various ECM ligands, including hyaluronan, osteopontin 
(OPN), and collagens, modulates the proliferation, invasion, 
and migration processes of tumour cells through signalling 
pathways [57, 58]. CD44 is a multifunctional 
transmembrane glycoprotein, and its various alternatively 
spliced variants are correlated with tumour subtypes and 

often used as markers of cancer stem cells (CSCs) that 
promote tumour progression. Strong overexpression of 
CD44 detected in high-grade HNSCC is correlated with the 
enrichment of pro-angiogenic factors, stimulating early 
angiogenesis and promoting HNSCC progression by 
facilitating the formation of new blood vessels to nourish 
tumour growth [59, 60, 61, 62]. In addition to its 
resemblance to the disease recurrence properties of CSCs, 
the elevation of CD44 levels in the serum of patients makes 
it an ideal marker of metastasis, potentially for HNSCC and 
other cancer types [57].  

Furthermore, our study also detected up-regulation of 
genes essential in cell cycle regulation. Cyclin-dependent 
kinase 1 (CDK1) activation by cyclin A2 and cyclin B during 
the G2 phase is required to enter the mitotic event. The 
formation of the CDK1 complex with B-type cyclins upon 
the onset of mitosis emphasises the importance of cyclin B1 
(CCNB1) in controlling the G2-M transition of the cell cycle 
[63]. Up-regulation of CCNB1 expression, which plays a role 
in tumour proliferation, has been reported in squamous cell 
carcinoma (SCC) of the lung and tongue and is also clinically 
relevant to histological grade in OSCC [64, 65].  

During nuclear translocation, polo-like kinase 1 (PLK1) 
phosphorylates CCNB1, crucial for activating cyclin B-
CDK1 complexes. In addition to suppressing pro-apoptotic 
function through the phosphorylation of p53, PLK1 can 
compromise cell cycle checkpoints and induce genetic 
instability, leading to tumourigenesis [66, 67]. Its importance 
in CDK1 reactivation in response to DNA damage recovery, 
and its role in activating chromosome segregation during the 
metaphase-anaphase transition, highlights its potential for 
the exploitation of cancer therapy [68].  

PLK1 also interacts with another identified gene, aurora 
kinase A (AURKA), during centrosome maturation in the G2 
phase [69]. AURKA is a serine/threonine kinase that can 
activate PLK1 and CDK1 through phosphorylation, thereby 
guarding the mitotic entry and G2 arrest upon DNA damage 
[70, 71]. Overexpression of AURKA has been observed to 
increase the frequency of tetraploidy and centrosome 
amplification, along with defective p53-dependent DNA 
damage checkpoints, which could lead to the formation of 
mammary cancer  [72, 73]. This arises from the simultaneous 
inactivation of both the spindle assembly checkpoint (during 
mitosis) and the DNA damage checkpoint (during the G2 
phase) [74, 75]. Consistent with our bioinformatics analysis, 
elevated levels of AURKA in cancer have also been reported 
in studies of HNSCC [76] and hepatocellular carcinoma 
[77].  

Similar to the findings above, other genes related to the 
mitotic spindle play a significant role in tumourigenesis. 
Overexpression of cell division cycle 20 (CDC20), a spindle 
checkpoint protein, can cause premature anaphase, resulting 
in aneuploidy in tumour cells [78]. Increased CDC20 
expression has been correlated with aneuploidy in OSCC, 
leading to reduced oral cancer-specific survival and 
suggesting its potential as an independent therapeutic target 
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[79, 80]. On the other hand, overexpression of mitotic arrest 
deficient 2 like 1 (MAD2L1), which functions in the mitotic 
spindle assembly checkpoint, negatively affects 
chromosomal stability by hyper-stabilising kinetochore 
microtubules [81]. The CDC20 and MAD2L1 cellular levels 
balance is crucial in regulating the anaphase-promoting 
complex/cyclosome (APC/C). MAD2L1 is required to 
counteract the CDC20-dependent activation of APC/C, 
halting anaphase initiation when the activated spindle 
assembly complex (SAC) detects unattached kinetochores. 
High expression of CDC20 and MAD2L1 is associated with 
aneuploidy in malignant tumours and worse prognosis in oral 
cancer, non-small cell lung cancer, gastric cancer, pancreatic 
ductal adenocarcinoma, and hepatocellular carcinoma [80, 
82, 83, 84, 85].  

DNA topoisomerase II alpha (TOP2A) is a nuclear 
enzyme that controls transcription and DNA replication and 
is involved in modifying DNA topologic states [86]. TOP2A 
plays a role in chromosome condensation, re-ligation of 
DNA strands, and is a marker for proliferating cells [87, 88]. 
Its up-regulation has been implicated in several tumours 
types, including NPC [87, 89, 90]. Importantly, TOP2A is an 
established molecular target for anthracyclin-based 
chemotherapy and is clinically relevant in the context of 
anticancer drugs, such as topoisomerase inhibitors like 
etoposide [91, 92, 93].  

In this study, GO and the KEGG pathway analyses 
revealed a closer relationship of up-regulated genes to cancer 
than down-regulated genes (Figure 4). Figure 4(a-d) shows a 
higher enrichment of EMT and immune system-related 
pathways among the up-regulated genes, which play a 
crucial role in the function of cancer cells. According to 
Wachi et al. (2005), a study on DEGs in lung squamous cell 
carcinoma (LUSC), the human PPI networks of up-regulated 
genes tend to exhibit higher network connectivity and 
centrality in cancerous tissues. These common topological 
characteristics shared among DEGs in cancerous tissue 
suggest that up-regulated genes are essential for cancer cell 
proliferation.  

In contrast to the up-regulated genes, the ten down-
regulated hub genes (TTN, ACTN2, MYL1, ATP5F1A, 
ACTA1, MYL3, MYH6, ATP2A1, MYLPF, COX5A) selected 
in our analysis have not been extensively characterised in the 
context of cancer, and the available findings directly 
associating these genes with HNSCC are limited. However, 
the relevance of genes encoding for myosin (MYL1, MYL3, 
MYLPF, MYH6) to HNSCC can be established. Consistent 
with our findings of myosin light chain 1 (MYL1) as a down-
regulated gene, MYL1 down-regulation has also been 
observed in the bioinformatics analysis of buccal cancer, 
which was cross-validated with qPCR analysis of cancer 
tissue [95]. In another study on OSCC, MYL1 and MYL3 
were down-regulated, and MYL3 down-regulation was also 
identified in OTSCC [96, 97]. Although the molecular 
pathogenesis of myosin light chains (MLC) is yet to be 
elucidated, He et al. (2004) suggested that the decreased 

expression of MLC reflects muscle destruction in tongue 
tumour tissue during cancer invasion and migration. The 
study of myosin light chain, phosphorylatable, fast skeletal 
muscle (MYLPF), which also showed down-regulation in the 
same study of HNSCC, further suggests its possible role in 
remodelling muscle function in HNSCC tissues [98]. The 
identification of myosin heavy chain 6 (MYH6) as a hub gene 
in HNSCC samples indicates its unique function in disease 
development, independent of tobacco smoking [99]. This 
tumour microenvironment-related gene predicts tumour 
progression and patient survival, thus considered a novel 
putative oncogene in HNSCC [100, 101]. 

Consistent with our findings, actin alpha 1, skeletal 
muscle (ACTA1) is also identified as a down-regulated gene 
that plays a role in cell integrity, structure, and mobility, 
highlighting its relevance to aggressiveness and clinical 
malignancy in oral epithelial dysplasia and HNSCC. ACTA1 
down-regulation has also been observed in colorectal cancer 
[98, 102]. The down-regulation of ACTA1, along with the co-
identification of MYL1 in the same study of buccal cancer 
and MYL3 in OSCC, suggests the reduced activity of actin 
and myosin in the remodelling of tumour tissue, particularly 
in HNSCC [95, 96]. Frequent mutation of TTN, another 
identified gene encoding a striated muscle protein, has been 
reported in lung squamous cell carcinoma, lung, colon, and 
breast cancer [103]. TTN has also been identified as a hub 
gene, along with actinin alpha 2 (ACTN2), in HNSCC [99]. 
Genes involved in muscle contraction (such as actin, myosin, 
and TTN) could be constituents of stromal myofibroblasts, 
which are associated with invasion and metastasis in OSCC 
[104, 105, 106, 107].  

There is a less established correlation between other 
identified genes with HNSCC. ACTN2 has been reported to 
be overexpressed in hepatocellular carcinoma, whereas the 
hypermethylation of ATP2A1 in oropharyngeal cancer 
indicates reduced disease-free survival [108, 109]. Low 
expression of ATP5F1A may promote tumour development 
with microsatellite instability (MSI), while high expression 
of ATP5F1A is associated with glioblastoma and earlier-
onset prostate cancer [110, 111]. A limited study on another 
identified gene, cytochrome C oxidase subunit 5A (COX5A), 
suggests its involvement in the migration and invasion of 
non-small cell lung carcinoma (NSCLC), highlighting its 
relevance in the tumorigenesis of LUSC [112, 113].  

Although the down-regulated genes identified in our 
bioinformatics analysis are consistent with the down-
regulation of mRNA levels in TCGA HNSCC samples (n = 
519) validated with GEPIA2 (Figure 8b), the results from the 
Kaplan-Meier plot suggest better overall survival for higher 
expression of the down-regulated genes identified in this 
study (Figure 9b). Using MYLPF as an example, its 
prognostic value is significantly increased in 
hypopharyngeal, laryngeal, and HNSCC when mRNA 
expression is higher [114]. This finding contradicts the 
results of the current study, where lower expression of 
MYLPF in TCGA HNSCC showed better overall survival 
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with a p-value = 0.0099. Similar contradicting trends, 
associating better overall survival with higher expression of 
ACTA1 and MYL1, have also been reported in HNSCC [98]. 
Such conflicts might arise from differences in the 
sociodemographic characteristics of patients, suggesting the 
possibility of stratifying HNSCC patients based on these 
unique molecular biomarkers [20]. However, further 
research is needed to accurately predict the prognostic value 
of the down-regulated genes to specific clinical parameters, 
as the tumorigenesis of these genes is yet to be fully 
understood. 
 
Limitations and Future Prospects 
 
In this study, RNA-seq data of HNSCC profiles were used in 
bioinformatics tools such as GEPIA2 and Kaplan-Meier 
Plotter, and the reported literature primarily relied on data 
sourced from the TCGA database. It is important to note that 
the genetic landscape of non-Caucasian cohorts in the TCGA 
database is limited, with only 3.86% of the head and neck 
cancer archives belonging to Asians [115, 116]. Therefore, 
there is a need to increase the sample size and include a 
broader spectrum of the world's population to improve data 
representation and enhance the credibility of the results.  

Another limitation of this study is related to the technical 
constraints of constructing the PPI network. The 
construction of the PPI network relies on experimental data 
and literature-based information catalogued in protein 
databases. This dependence on established data could 
introduce bias in identifying hub genes, as proteins that have 
been extensively studied may appear to have a stronger 
correlation to biological relevance, potentially misleading 
the identification process [117, 118].  

While in silico analysis is beneficial for identifying 
potential hub genes with crucial roles in HNSCC, it is 
important to complement this study with an experimental-
based approach. After the discovery phase, the mRNA 
expression of DEGs in HNSCC samples can be validated 
using real-time polymerase chain reaction (RT-PCR). 
Additionally, the protein expression and localisation of 
DEGs in HNSCC tissues can be analysed using 
immunohistochemical staining, and these results can be 
compared with the findings obtained through bioinformatics 
analysis [16]. Validated DEGs have the potential to serve as 
biomarkers for predicting cancer recurrence, disease 
progression, and individual responses to therapeutic 
interventions, such as tumour resistance to radiotherapy [15, 
20]. Furthermore, research can be expanded to understand 
the relevance between the dysregulation of DEGs in HNSCC 
and the modulation of the tumour microenvironment by 
integrating CRISPR technology, which can be useful in 
designing DNA vaccines for immunotherapy [119, 120]. 
 
 
 
 

CONCLUSION 
 
The network-based meta-analysis pipeline applied to 
HNSCC datasets has effectively revealed a strong 
association between the identified hub genes and the 
underlying molecular mechanisms of cancer. This study’s 
findings underscore the potential significance of eleven 
genes in the context of HNSCC. Among these, the six down-
regulated genes (MYL1, MYL3, MYH6, MYLPF, ACTA1, 
TTN) and five up-regulated genes (CDC20, CCNB1, 
MAD2L1, TOP2A, MMP9) exhibit promise as biomarkers 
for HNSCC diagnosis. Furthermore, an additional set of five 
up-regulated genes (FN1, CDK1, PLK1, AURKA, CD44) 
could serve as valuable biomarkers for prognosis and 
diagnosis in clinical HNSCC analyses. These differentially 
expressed genes warrant in-depth investigation to 
characterise their precise molecular functions and role in the 
pathogenesis of HNSCC. The integrated bioinformatics 
approach, utilizing transcriptomic data, has demonstrated its 
robustness as a methodology for exploring potential 
biomarkers applicable across various cancer types. This 
work enhances our understanding of HNSCC and opens 
avenues for broader applications in cancer research. 
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