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The serious pandemic of coronavirus disease 2019 (COVID-19), which started in 
Wuhan City, China, in late December 2019, has undoubtedly been a global health 
emergency that severely affects the world population. The disease is caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One of the crucial proteins 
of SARS-CoV-2 is the main protease (Mpro), a cysteine protease that plays an important 
role in viral replication. Therefore, Mpro has become an attractive drug target for 
chemotherapeutic intervention. In this study, an in silico screening of natural 
compounds from the ZINC database  was performed in order to identify inhibitors 
targeting the active site of SARS-CoV-2 Mpro. Using combined computational methods 
including docking-based virtual screening, drug-likeness evaluation, molecular 
dynamics (MD) simulations, and MMPBSA calculations, the screening platform could 
identify three promising compounds. These include ZINC253412009, ZINC65297929, 
and ZINC65298044 which exhibited satisfactorily low free binding energy levels of -
28.56 ± 15.71, -28.55 ± 11.78, and -28.20 ± 12.66 kcal/mol, respectively. These 
compounds show significant interactions with key residues lining the Mpro active site, 
warranting their high potential to be developed further. Future in vitro confirmation and 
viral challenge experiments are also needed to obtain a more detailed pharmacological 
profile of the candidate compounds. 
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INTRODUCTION 
 
The pandemic of coronavirus disease 2019 (COVID-19) has 
been a severe health problem greatly impacting the world 
population. Since its first outbreak in Wuhan City of China 
in late December 2019, COVID-19 has caused a global 
health emergency, prompting urgent developments of 
vaccines and therapeutic treatments [1, 2]. As of September 
2021, the total cumulative infection cases are more than 230 
million worldwide, with the reported deaths exceeding 4.7 
million [3], rendering COVID-19 one of the most 
devastating pandemics in the history of mankind. Symptoms 
observed in infected patients can vary among different age 
groups which could include fever, dry cough, fatigue, loss of 

taste or smell, nasal congestion, headache, and difficulty 
breathing or shortness of breath [4]. For the treatment of 
COVID-19 to date, the US FDA has currently approved only 
one therapeutic drug Veklury (Remdesivir) as antiviral 
treatment for use in adults and pediatric patients requiring 
hospitalization [5].  
 COVID-19 is caused by severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), which is classified 
in the order Nidovirales, family Coronaviridae, subfamily 
Coronavirinae, and genus Betacoronavirus. The virus can 
cause respiratory, digestive, and nervous system diseases in 
humans and several other animals [6]. The coronavirus 
genetic material consists of a single-stranded and positive-
sense genomic RNA ranging from 26 to 32 kilobases in 
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length [7]. Similarly to other coronaviruses, SARS-CoV-2 
viral particle comprises four structural proteins, including 
membrane protein (M), nucleocapsid (N), spike protein (S), 
and envelop protein (E) [8, 9]. For the drug development 
targeting SARS-CoV-2, however, the main protease (Mpro) 
has been a crucial drug target as it plays a critical role in the 
viral replication. Mpro is a cysteine protease involved in the 
cleavage and maturation of polyproteins translated from the 
viral RNA [1, 10]. This key protease enzyme consists of 
three domains, including domain I (residues 8–101), domain 
II (residues 102–184), and domain III (residues 201–303). 
The active site of SARS-CoV-2 Mpro is located within a cleft 
formed between the domains I and II, enclosing its catalytic 
dyad residues His41 and Cys145 [11]. For catalysis, Cys145 
acts as a nucleophile during the first step of hydrolysis 
reaction, assisted by His41 as a base catalyst [12]. Small 
molecules targeting these highly conserved residues can thus 
inhibit the proteolytic reaction mediated by Mpro.   
     Previous drug discovery studies have screened several 
antiviral agent groups, with different levels of success, for 
their inhibitory potency against SARS-CoV-2 Mpro catalytic 
activity. These include RNA-dependent RNA polymerases 
(RdRps) inhibitors, HIV inhibitors, anti-retroviral agents, 
and anti-influenza drugs [13-15]. However, as many mutated 
variants of the virus emerges, more therapeutic options for 
SARS-CoV-2 are urgently needed to combat the ever-
increasing infection rate. Therefore, we aimed to employ 
computational methods to help accelerate the drug discovery 
process. In this study, we virtually screened a large pool of 
natural product compounds for their potential inhibitory 
activity against SARS-CoV-2 Mpro. Drug-likeness following 
the Lipinski’s rules was also used as a selection criterion for 
the screening, The selected compounds were subsequently 
subjected to additional analyses of their binding mechanisms 
via molecular dynamics simulations and molecular 
mechanics calculations. The final three candidate 
compounds discovered from this platform can thus be tested 
further towards becoming SARS-CoV-2 antiviral agents and 
COVID-19 chemotherapeutic treatment. 

 
MATERIALS AND METHODS 
 
Protein Preparation 
 
Three-dimensional structure of SARS-CoV-2 Mpro complex 
with baicalein ligand bound in the active site (PDB ID: 
6M2N), determined by x-ray crystallography, was retrieved 
from the RSCB Protein Data Bank (https://www.rcsb.org/) 
in a pdb file format and used in the docking experiment. The 
Mpro structure is as of good structural quality with a 
resolution of  2.20 Å, and Ramachandran outliers is 0.1% 
(not more than 5%), indicating that the structure adequately 
fits the expected main-chain torsion angle distribution [16]. 
The coordinates of baicalein molecule was removed from the 
protein structure by using BIOVIA Discovery Studio 
Visualizer v16.1.0.15350. Water molecules were deleted 

from the protein, hydrogen atoms were later added to the 
structure using AutoDock Tools version 1.5.7rc 1 [17] before 
being saved in a pdbqt file format. Subsequently, for 
preparing the protein structure prior to the molecular 
dynamics (MD) simulations, the protonation types of 
histidines (HID, HIE, and HIP) [18] were predicted from the 
APBS-PDB2PQR software suite 
(https://server.poissonboltzmann.org/) and then annotated in 
the structure. 
 
Ligand Preparation  
 
For this study, baicalein molecule that was originally co-
crystallized with SARS-CoV-2 main protease [16] was used 
as a reference ligand, as well as for the validation of docking. 
Baicalein molecule was extracted from the protein structure 
and saved in a pdb file format. The pdb file was then 
converted into a pdbqt file format by using MGLTools. 
Moreover, 279,970 natural product compounds to be 
virtually screened were retrieved from the ZINC database 
(https://zinc.docking.org/) in mol2 file format. The mol2 
files were then converted to pdbqt files using AutoDock 
Tools (ADT) package via a Python script 
(run_prepareligand). 
 
Molecular Docking of Protein-Ligand Complexes  
 
Autodock Vina [19] on a Linux operating system was 
employed for our docking experiment. The aforementioned 
pdbqt files of protein and ligands were subjected to the 
docking protocol. A grid box was defined on the active site 
of Mpro, which covers the two crucial residues, His41 and 
Cys145 (supplementary figure S1). The grid box center (x, 
y, z) was set at -18.967, -41.985, and 29.234, respectively. 
Size of the grid box (x, y, z) was set as 18, 16, and 22, 
respectively. Subsequently, the exhaustiveness, energy 
range, and num_mode was set as 30, 3, and 10, respectively. 
Of note, the active site of Mpro is highly conserved as there is 
no evidence, to date, showing that the major SARS-CoV-2 
viral variants, such as Alpha, Beta, and Delta, have any 
mutation within the active site. 
 
Drug-likeness Evaluation 
  
From the docking-based virtual screening result, natural 
product compounds showing better binding affinities 
(kcal/mol) than that of the reference ligand were analyzed 
further for their drug-like properties according to the 
Lipinski’s rules of five [20] using the ADMETlab web 
server. 
 
Molecular Dynamics (MD) Simulations 
 
Top compounds selected from both the docking-based 
screening and the drug-likeness screening were then formed 
into a complex with Mpro (via docking) and subjected to an 
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MD simulation by using GROMACS 4.6.3 program [21]. 
The MD production run for all simulating system was set as 
100 ns. The Antechamber module was employed for the 
ligand topology preparation with a general AMBER force 
field (GAFF). A semi-empirical model (AM1) bond charge 
correction (BCC) charge model, or AM1-BCC, was used to 
generate the atomic charges [22]. The complex systems, 
coordinates, and parameters were prepared via Amber 
ff99SB force field [23] for enhancing the dynamics and the 
protein secondary structures. TIP3P water model with a 
cubic box of 10.0 Å was used to refine the structure for 
simulating and calculating thermodynamic parameters. 
Sodium and chloride ions were added to neutralize the 
charge of the system [24]. For energy minimization, the 
steepest algorithms were used to minimize the systems at a 
maximum force under 10.0 kJ/mol and a maximum number 
of 50,000 steps. All equilibrium of MD simulation systems 
were completed using a leap-frog integrator at 2 fs, 
temperature coupling of Berendsen thermostat at 300K [25], 
and isotropic Parrinello-Rahman for pressure control at 1 
atm [26]. Bond constraints were accounted throughout the 
simulations by using a linear constraint solvent (LINCS) 
algorithm [27]. The Particle-Mesh Ewald (PME) method 
was employed for effective long-range electrostatic 
calculations [25]. Subsequently, the output files were 
analyzed by the GROMACS utilities. 
 
MM-PBSA Energy Calculations 
 
Molecular trajectories of the protein-ligand complexes 
resulted from the MD simulations were employed in order to 
calculate Gibb’s free energy of binding using molecular 
mechanics Poisson-Bolzmann surface area (MM-PBSA) 
approach [28, 29], which was achieved by a g_mmpbsa tool 
[30, 31] available within the APBS and GROMACS 
software packages. Energy parameters generated from the 
MM-PBSA approach was described by the following 
equations:  
 

ΔGbind = ΔEMM + ΔGsolv – TΔS 
 
, where ΔGbind is total binding free energy. ΔEMM is 
calculated as a sum of the gas-phase energy, ΔGsolv is 
solvation energy correlated to the transition from the gas-
phase to the solvated state, and TΔS is conformational 
change entropy related to the ligand binding process. Of 
note, the entropic term is not considered in this work as its 
calculation require significant amount of computational 
effort. ΔEMM is also calculated as a sum of the gas-phase 
energetic terms, e.g. internal energy (ΔEint), electrostatic 
interactions (ΔEelec), and van der Waals interaction energies 
(ΔEvdW) as following: 
 

ΔEMM = ΔEint + ΔEelec + ΔEvdW 
 

Additionally, ΔGsolv is calculated as a sum of polar and 
non-polar components. The Poisson-Boltzmann implicit 
solvent model (ΔGPB) was employed to estimate the polar 
contribution. On the other hand, solvent accessible surface 
area (ΔGSA) was employed to calculate the non-polar 
contribution for free energy of solvation as follows: 
 

ΔGsolv = ΔGPB + ΔGSA 
 

In this study, snapshots for the MM-PBSA calculation 
were collected every 2 ns for the last 20 ns (during 80-100 
ns) of the MD runs. Additionally, in order to confirm if the 
structures found during the last 20 ns were good 
representatives of all conformations, we performed a 
structure clustering study. The GROMACS tool (gmx 
cluster) was utilized to evaluate structural clustering for 
identifying similar structures obtained during MD 
simulation of all Mpro-ligand complexes. An RMSD cut-off 
of 0.15 nm was set for this step, which revealed three, five, 
three, and three clusters for the Mpro complexes with C1, C2, 
C3, and reference compounds, respectively. The top clusters 
represent 90%, 58%, 96% and 96% of structures of 
complexes with C1, C2, C3, and reference compounds, 
respectively. This structure clustering analysis also 
confirmed that the major conformations are mainly within a 
duration time of 80-100 ns of the MD simulations. 
 
RESULTS AND DISCUSSION 
 
Molecular Docking and Structure-based Virtual 
Screening  
 
In order to obtain an optimized molecular docking protocol 
suitable for our virtual screening experiment, molecular 
docking was first validated using the co-crystal structure of 
SARS-CoV-2 Mpro bound with baicalein, which was 
designated as our reference compound. To do this, baicalein 
molecule was removed from the protein-ligand complex 
structure, and then re-docked into the active site of the 
protein. In this study, we focused our docked region on the 
Mpro active site, particularly around the location of catalytic 
dyad, His41 and Cys145. The docked complex structure was 
then overlaid onto the original co-crystalized complex 
structure in order to compare the structural coordinates and 
thus determine the accuracy of the docking protocol. Root-
mean-square derivation (RMSD) between the re-docked 
ligand and the original co-crystalized ligand structures was 
0.7 Å (supplementary figure S2), indicating that the docking 
protocol could yield an accurate prediction of the ligand 
binding conformation.   

For the virtual screening, 279,970 natural product 
compound structures were docked onto the active site and 
subsequently ranked based upon their calculated binding 
affinities (Figure 1). From this step, we selected the top 10% 
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Figure 1. Schematic diagram of the virtual screening process and the selection criteria employed in this study, which include ranking based 
on the docking results (binding affinity), the presence of specific interactions with the catalytic dyad residues, and the calculated drug-likeness 
 
 
Table 1. Chemical structures and binding affinity values (determined by molecular docking) of the top three candidate compounds and the 
reference compound 
 

 
No. 

 
Structure 

 
Compound 

 
IUPAC name 

Binding 
affinity 

(kcal/mol) 
  
 1 

 
ZINC253412009 

(C1) 
10-(1,3-dimethyl-2-oxo-2,3-dihydro-1H 
benzo[d] imidazol -5-yl)-3-phenyl-9,10 

dihydropyrano[2,3-f]chromene-4,8-dione 

-10.5 

  
 2 

 
ZINC65297929 

(C2) 
1-[2-(2H-1,3-benzodioxol-5-yl)-4-(2-

hydroxyphenyl)-1,5,9-tri -
azaspiro[5.5]undec-1-en-9-yl] ethan-1-one 

-9.4 

  
 3 

 
ZINC65298044 

(C3) 
1-[2-(2H-1,3-benzodioxol-5-yl)-4-(5-

chloro-2-hydroxyphenyl)-1,5,9-
triazaspiro[5.5]undec-1-en -9-yl]ethan-1-

one 

-9.4 

  
 4 

 
Baicalein 

(Reference) 
5,6,7-Trihydroxy-2-phenyl-4H-1-

benzopyran-4-one 
-7.6 
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of the ranked compounds and screened further using a cut-
off binding affinity of -7.6 kcal/mol, which was the level 
from the docking of the reference compound (baicalein). 
Compounds with binding affinities lower (better) than the 
reference were inspected further for their specific 
interactions with the active site's catalytic dyad residues 
His41 and Cys145. As a result, 9,315 compounds passed our 
structure-based virtual screening criteria and were then 
subjected to the drug-likeness evaluation step (vide infra). 
Notably, as summarized in Table 1, the final top three 
candidate compounds, namely ZINC253412009 (C1), 
ZINC65297929 (C2), and ZINC65298044 (C3), have better 
binding affinities (-10.5, -9.4, and -9.4 kcal/mol, 
respectively) than that of the reference compound (-7.6 
kcal/mol). 
 
Drug-likeness Evaluation 
   
Drug-likeness analysis was employed in order to assess the 
molecular properties possibly affecting pharmacokinetics of 

the compounds, which was also considered as one of our 
criteria to further screen the large pool of compounds. In this 
study, the compounds were analyzed with the Lipinski’s rule 
of five, which includes: 1) number of hydrogen bond 
acceptors not more than 10; 2) number of hydrogen bond 
donors not more than 5; 3) molecular weight less than 500 
g/mol; 4) Log P not greater than 5 (lipophilicity); and 5) 
polar surface area (PSA) not more than 140 Å [32]. From the 
top 10% of compounds selected by the binding affinity 
ranking and interactions with catalytic dyad residues, we 
selected three compounds that passed all five criteria of the 
Lipinski’s rule of five, the results of which were summarized 
in Table 2. Of note, the reference compound, baicalein, also 
meets all of the drug-likeness requirements of Lipinski’s rule 
of five. Therefore, all four compounds were then subjected 
to MD simulations and MMPBSA calculations in order to 
evaluate the dynamics behaviors, energetic contribution, as 
well as the binding mechanisms towards the active site of 
Mpro.

 
Table 2. The properties of drug-likeness analysis of top compounds and reference compound 
 

Compound Mw HB Acceptor HB Donor Log P PSA (Å) 
C1 452.47 7 0 4.091 83.44 
C2 407.47 6 2 2.983 83.39 
C3 441.92 6 2 3.637 83.39 

Reference 270.24 5 3 2.577 90.90 

Molecular Dynamics Simulations Study 
 
To investigate the binding modes of the candidate 
compounds in the aspect of conformational motions, MD 
simulations were employed to analyze the complexes formed 
with SARS-CoV-2 Mpro. Observation of atomic and 
molecular movements could lead to an explanation of their 
high binding affinity, which will help guiding future 
optimization of the inhibitor ligands. For a comparison, a 
complex formed with the reference ligand baicalein was also 
investigated in this experiment. All protein-ligand 
complexes were run for 100 ns to assess the local and 
regional flexibility and stability of the molecules. Outputs 
from the MD simulations were assessed for the common 
parameters generated, including root-mean-square deviation 
(RMSD) and root-mean-square fluctuation (RMSF). In 
addition to the molecular details of motions, intermolecular 
interactions between the candidate ligands and the protein 
could also be obtained from the MD snapshots, and the 
binding mechanisms could thus be derived based on the 
evidence of these intermolecular contact formation.   

In order to track structural changes in complex 
trajectories during the MD runs, backbone heavy atom 

coordinates of each protein amino acid in the molecular 
systems at collected time point were compared to those at the 
initial time point, the discrepancy of which can be presented 
as root-mean-square deviation (RMSD) values. Magnitude 
of fluctuations in the RMSD values during the MD run could 
infer to the formation stability of the complex structure [33]. 
RMSD trends of the protein coordinates in each complex 
were plotted in Figure 2. 

RMSD trends from the MD simulations of the four 
molecular systems were compared for differences in 
structural deviation. Results revealed that the protein 
backbone of Mpro with no ligand bound showed some 
fluctuation during 20 – 40 ns period but became relatively 
stabilized for the remaining progression. However, the level 
of fluctuation was not significantly different from those 
found in other complexes. Interestingly, among all 
complexes, the Mpro-C2 complex exhibited the most 
fluctuated RMSD’s, suggesting a relatively less stable 
complex formation. On the other hand, Mpro-C1, Mpro-C3, 
and Mpro-reference complexes appeared very stable with an 
average RMSD’s lower that 0.5 Å, indicating a quickly 
stabilized complex formed between the protein and the 
ligands.
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Figure 2. Root-mean-square deviation (RMSD) trends of structural coordinates comparing free Mpro protein (blue), Mpro-C1 complex (red), 
Mpro-C2 complex (orange), Mpro-C3 complex (cyan), and Mpro-reference complex (pink) 
 

Notably, we also confirmed the reliability of the MD 
protocol by repeating the simulations of the Mpro-reference 
complex and subjected the trajectory data to the MMPBSA 
calculation in order to obtain the quantitative parameters. 
The results from the repeating MD production were similar, 
within the error ranges, to the first MD simulation, indicating 
that the MD protocol and the simulation data were reliable 
(supplementary table S1). 

Hydrogen bond analysis was performed to further 
demonstrate the polar interaction of Mpro-ligand complexes. 
Figure 3 depicts the number of hydrogen bonds determined 
from the GROMACS utilities (gmx hbond tool). During the 
last 20 ns of the MD trajectories, the number of hydrogen 
bonds formed within the Mpro complexes with C1, C2, C3, 
and reference compounds were, by average, two, three, 
three, and four hydrogen bonds, respectively.

 

 
Figure 3. Hydrogen bond occupancy of Mpro-C1 complex (A), Mpro-C2 complex (B), Mpro-C3 complex (C), and Mpro-reference complex (D) 
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Additionally, we investigated local structural 
fluctuations of amino acid backbone along the peptide chain, 
as averaged for the entire MD run. To this end, root-mean-
square fluctuation (RMSF) values could be calculated and 
presented per-residue in order to evaluate local flexibility of 
the peptide chain as affected by the binding of various 
ligands. This could be achieved by comparing the protein 
RMSF data from the ligand-bound and -unbound forms. The 
RMSF results were illustrated in Figure 4. The data showed 

no significant difference in the local structural flexibility 
observed in bound or unbound forms of the protein. This 
observation also applies to the catalytic dyad residues within 
the active site of Mpro. This could suggest that all of the 
ligands examined may employ a similar binding mechanism, 
or the binding process does not significantly perturb the local 
flexibility of the binding site. Notably, the entire chain of the 
protein is not highly fluctuated, as most of the regions 
exhibited low RMSF values within the level of 0.75 Å.

 

 
 

Figure 4. Root-mean-square fluctuations (RMSF) of Mpro free protein (blue), Mpro-C1 (red), Mpro-C2 complex (orange), Mpro-C3 complex 
(cyan), and Mpro-reference complex (pink). Topology diagram of the Mpro secondary structures is also illustrated atop of the graph indicating 
the residue ranges of alpha helices (pink) and beta sheets (cyan). Locations of the catalytic dyad residues His41 and Cys145 in the active site 
are indicated 
 

In order to better understand how the protein and ligands 
interact, snapshots of the last structural trajectories were 
obtained and compared for their intermolecular contacts. 
Interactions within the active site cleft were focused, which 
include hydrogen bonding (H-bonds) and hydrophobic 
interactions such as π-π stacking, π-sigma, π-sulfur, or π-
alkyl intermolecular patterns. It was found that C1 
compound could form hydrogen bonds with Cys44 and 
Gln189. For hydrophobic interactions, C1 formed π-π 
stackings with His41 and Gln189, π-sulfur with Met49 and 
Cys145, and π-sigma with Met165. C2 compound, on the 
other hand, could form H-bonds with Cys145 and Arg188, 
as well as several hydrophobic interactions including π-π 
stacking with His41, π-sulfur with Cys44 and Cys145, 
amide-π with Asp187 and Arg188, and π-alkyl with Met165. 
C3 compounds could also form H-bonds with Thr190 and 
Gln192, and π-π stacking hydrophobic interactions with 

His41, π-sulfur with Cys145, π-alkyl with Lue27, His41, 
Met49, and Met165. To our surprise, the Mpro-reference 
complex revealed fewer interactions than those found in 
other complexes, which might influence the binding free 
energy and the stabilizing of the molecular system. Though 
baicalein could form H-bonds with Ser144 and Glu166, it 
could form limited hydrophobic interactions only through π-
π stacking with His41, and π-alkyl with Met49 and Met165. 
This observation agrees well with the free energy of binding 
calculated from the Mpro-reference complex, which will be 
discussed in the next section. Nevertheless, the interaction 
analysis could indicate that all of the candidate compounds 
exhibited strong intermolecular contacts with the residues 
lining the active site of Mpro, suggesting a tight binding 
toward the target protein, which is one of the desire 
properties commonly possessed by a potent inhibitor. 
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Figure 5. Binding modes and intermolecular interactions observed within the protein-ligand complexes obtained from the last snapshot 
structures of the MD simulations. (A-D) three-dimensional conformations and (E-H) two-dimensional representation of interactions. 
Complexes include Mpro-C1 (A and E), Mpro-C2 (B and F), Mpro-C3 (C and G), and Mpro-reference (D and H). Hydrogen bonds are highlighted 
in green dotted lines, while hydrophobic interactions are indicated in pink dotted lines 
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Binding Free Energy Calculations 
 
Although the binding affinity values calculated from the 
molecular docking could provide some information 
regarding the trend of ligand binding efficacy, they might not 
be sufficiently accurate to predict the binding of ligands with 
similar levels of potency. To achieve higher accuracy of 
binding prediction, a more sophisticated calculation method 
such as molecular mechanics Poisson-Boltzmann surface 
area (MM-PBSA) could be employed to provide rich details 
of binding, especially the energetic contributions of the 
protein-ligand recognition. To do this, the trajectories of all 
molecular systems from our MD simulations were 
subsequently subjected to the MMPBSA calculations to 
predict the binding free energy (ΔGbind). Additionally, the 
calculation could provide a set of energetic parameters 
contributing to the ΔGbind, which could help us analyze 
further by comparing with the modes of binding observed by 
the MD simulations. The results from MMPBSA 

calculations are summarized in Table 3, which describes all 
contributing energy terms amounted to the binding of each 
Mpro-ligand complexes. Interestingly, all of the complexes 
with candidate compounds exhibited equally low ΔGbind 
when compared with the Mpro-reference complex, indicating 
stronger binding than that of the reference ligand. The levels 
of contributing energies are also similar among the candidate 
ligands. However, the reference ligand binding exhibited 
lower (more negative) electrostatic energy (ΔEelec) and 
higher ΔGnonpolar, which could be due to the extensive 
delocalization of pi-electrons in its connected aromatic rings. 
ΔEvdW of the reference ligand binding is also poorer (less 
negative), which could be the result of having a significantly 
smaller molecular size that those of the candidate 
compounds. The stark difference in the total binding free 
energies between the reference and the candidate ligands 
agrees well with the number of intermolecular contacts 
observed from the MD snapshots as described in the 
previous section.

 
 
Table 3. Binding free energy and contributing energetic parameters of the complexes between Mpro and either candidate or reference ligands 
calculated from MMPBSA 
 

 
Compounds 

Contributing Energy (kcal/mol) 

ΔEvdw ΔEelec ΔGnonpolar ΔGpolar ΔGbinding 

C1 -197.99 ± 12.86 -39.51 ± 9.59 -17.44 ± 1.01 135.38 ± 14.76 -28.56 ± 15.71 
C2 -220.17 ± 10.21 -37.47 ± 8.71 -18.81 ± 0.81 156.92 ± 9.54 -28.55 ± 11.79 
C3 -233.57 ± 11.54 -38.54 ± 8.39 -20.60 ± 0.91 174.63 ± 13.33 -28.20 ± 12.66 

Reference -122.10 ± 20.50 -62.06 ± 32.16 -12.79 ± 1.25 136.23 ± 25.92 -14.50 ± 13.63 
 

 
Additionally, in order to further delineate individual 

contribution of each particular interaction with the Mpro 

active site, free energy decomposition per amino acid residue 
was also calculated (Figure 6). Data from this decomposition 
method could also identify key amino acid residues playing 
important role in the recognition of tight-binding ligands. 
Furthermore, information from this experiment could help 
guiding our future optimization of the inhibitor by 
chemically modifying the compounds to accommodate more 
contacts with the key residues, thereby enhancing the 
binding efficacy. From the calculation, we found five amino 
acids, including Met49, Met165, Asp187, Arg188, and 
Gln189, that could interact significantly with the ligands, 
exhibiting free energy decomposition lower than -1.0 
kcal/mol per-residue. From the trend of energetic 

contribution, it was apparent that the candidate ligands 
interact with these key residues better than the reference 
ligand. By average, Met165 residue exhibited the most 
significant level of free energy contribution, indicating its 
importance in determining the ligand binding robustness. 
Previous research studies [34, 35] have also revealed that 
Met165 contributed the most significant binding free energy 
toward several inhibitors. However, in the cases of Asp187 
and Arg188, only C2 compound can interact favorably with 
these two residues, which coincide well with the result from 
our MD snapshot (Figure 5F) showing that these particular 
interactions are exclusive to only C2 ligand. This key piece 
of information could thus help direct our future ligand 
optimization effort to include these specific interactions in 
the molecular design.
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Figure 6. (A) Free energy decomposition per-residue for the binding between Mpro and C1 (orange), C2 (green), C3 (purple), and reference 
(yellow) ligands. (B) Three-dimensional surface model of the Mpro active site when bound with a representative ligand highlighting all key 
amino acid residues significantly contributing to the ligand binding 
 
 
CONCLUSION 
 
The current COVID-19 pandemic severely affecting the 
world population has prompted biomedical scientists around 
the globe to discover an effective therapeutic treatment for 
the disease, both for the preventative vaccine and the drug 
treating infected patients. Additionally, as the mutated 
variants of the virus constantly emerge, the development 
process has to be accelerated to respond quickly to the 
outbreaks. To this end, we have employed in silico methods 
to discover novel inhibitor candidates from a large pool of 
natural product ligands available in the compound database. 
From our virtual screening, key interactions with catalytic 
dyad, and drug-likeness screening, three potential candidates 
were identified. Additional MD simulations, MMPBSA 
calculations, and decomposition energy could also describe 
the binding of the candidate compounds and identify several 
key contacts with the amino acid residues lining the active 
site of Mpro. These key intermolecular interactions could also 
help us to better understand the binding mechanism of potent 
inhibitors as well as to guide future endeavors in optimizing 
the chemical structure of the ligand. Future in vitro and in 
vivo testing is also required in order to confirm the result and 
evaluate the possibility towards becoming an actual 
treatment for COVID-19. 
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